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Abstract– The storage of a general TLM

Johns matrix is large because the dimension

of Johns matrix is dependent on the

iteration number. The time-domain

convolution with Johns matrix is

comput ationally intensive as the whole time

history of the incident impulses is involved.

In this paper, analytic Johns matrix is

derived. A recursive convolution formulas is

then developed, resulting in a considerable

reduction of the comput ation count.

I. Introduction

The Transmission Line Matrix (TLM)

method is a numerical modeling tool for

solving electromagnetic field problem in

space and time. An extensive list of

references can be found in a chapter on

TLM applications [1] .

Difficulties arise in the TLM method for the

problems containing large areas with the

changes only over a small part of geometry.

Inefficiency results as the computation have

to be re-iterated over the large unchanged

areas every time a change is made.
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The technique of diakoptics (or domain

partitioning in time-domain) overcomes the

disadvantages by breaking a solution

domain down into smaller sub-domains.

The subdomains are solved individually and

then connected together to obtain the

overall solution for a problem. The concept

and idea were first presented by Johns ~2,

3], further enhanced and generalized by

Hoefer [4] with the introduction of the

concept of Johns matrix, the discrete time-

domain Green’s function for TLM.

II. Analytic Johns Matrix

Consider a simple short -circuited

rectangular waveguide stub as shown in

Figure 1, modeled by a two-dimensiond

TLM network.

Conventionally, the Johns matrix at the

open end is generated by first injecting a

single unit impulse into branch 1, and

computing the resulting impulse streams

emerging from all Ill branches. This yields

all elements gk(m, 1) of the Johns matrix.

Then branch 2 is excited, yielding all
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elements gk(m,2). In general, N such

analyses or N runs of such numerical

simulation are necessary to obtain all terms

of the Johns matrix unless symmetry

considerations allow us to reduce that

number. The size of the Johns matrix

would be ill x N x (1{+1), which can be

huge for a long iteration ( large K).

With the Johns matrix, the response of the

structure due to an arbitrary excitation in

space and time can be computed by

convolution:

As can

domain

be seen, the convolution in time

involves the whole time history of

the incident impulses and the computation

count increases as the k increases (time

progresses). If a long iteration (large k) is

needed, the computation will becomes

extremely slow at the last few iterations as

the CPU time for each iteration becomes

too large.

Recent investigation has shown that the

solutions of a recursive numerical method

can be analytically expressed in terms of

superposition of modal modes, each mode

being weighted by exponential functions

whose arguments are proportional to time

or the time step k [3,4]. Since the Johns

matrix is a particular TLM solution with

special arrangements of the impulse

injection as mentioned earlier, it can be

written as: ~

where bmnp is the constant independent of

~wP ‘t is the eigenvalue ofk and AP=IAPI e

the modal matrix with up ‘being the modal

frequency.

It should be noted that in the above

equation, not all the terms need to be

stored. If Ap is a complex number, there

must be an eigenvalue conjugate to Ap.

The same to bmnp. Hence, conjugates of

the Ap and bmnp need not be recorded. In

addition, the structure (Figure 1) is lossy.

As a result, the terms with IAPI=l, which

represent non-decaying spurious modes, can

be discarded.

III. Recursive Scheme for Convolution

With the analytic Johns matrix (2), the

numerical convolution will become a simple

recursive algorithm.

k k-k’ vi nwhere Qmnp(k) = k~l bmnp ‘P kl( )
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=b mnp v~(~) + ~P QmnP(~ – 1) with

Qmnp(o) c bmnp Vj(rn)

In consequence, the numerical convolution

does not require the storage of the complete

time history of incident impulses. It is no

longer dependent on the number of

iteration. Thus, practical use of Johns

matrix over a long iteration becomes

feasible.

IV. Numerical Results

The rectangular waveguide cross-section

10A1 x 16A/ is selected to validate and test

the proposed method (see Figure 2). The

structure was first divided into two separate

sections 10A1 x 9A/ and 10AZ x 7A1 and the

Johns matrices were generated using the

conventional approach and the proposed

met hod, respectively. Then, the Johns

matrices were connected to obtain the

solution.

Figure 3 shows the frequency responses of

the waveguide obtained from the proposed

met hod and

approach. They

from the convent ional

are basically the same.

Figure 4 presents the comparison between

the computation time per iteration used by

the conventional and proposed methods.

For the initial period of simulation, the

iteration number is small. The conventional

approach takes less CPU time. However, as

the iteration number increase, the

computation amount per iteration in th!e

convent ional approach increases

approximate ely linearly with the the

iteration number (due to the convolution),

while in the proposed method it is

unchanged. As a result, when the iteration

number exceeds 700, the proposed approaclh

starts to have less computation time.

V. Conclusion

In this paper, an analytic Johns

been obtained and consequently

algorithm for convolution

developed. It allows the

applications of Johns matrix

problems and the establishment

matrix has

a recursive

has been

practical

to realistic

of dat abas~e

for standard structures in the forms of

Johns matrix.

References
[1]

[2]

[3]

[4]

W. J. R. Hoefer, “The transmission line matrix
(TLM) method”, Chapter 8 in Numerical
Techniques for Microwave and Millimeter

Wave Passive Structures, ed. T. Itoh, Wiley,
New York, 1989, pp.459-591
P. B. Johns and S. Akhtarzad, “The use clf
time domain diakoptics in time discrete models
of fields”, Int. J. Numer. Methods Eng. ., 17,
1-14, 1981
P. B. Johns and S. Akhtarzad, “Time domain
approximation in the solution of fields by time
domain diakoptics”, Int. J. Numer. Method!s

Eng. ., 18, 1361-1373, 1982

W. J. R. Hoefer, “The discrete time domain
Green’s function or Johns matrix – A new
powerful concept in transmission line modeling
(TLM)”, Int. J. Numer. Modelling: Electronic

Networks, Devices and Fields, Vol. 1, 1989

779



[5] Z. Chen and P. P. Silvester, “Analytic solution [6] Z. Chen and P. P. Silvester, “Modal theory for
for the finite-difference time-domain and recursive time-stepping numerical methods”,
transmission-line-matrix methods”, Microwave Digest of 1994 IEEE Antennas and
and Opt~cal Technology Letters, Vol. 7, No. 1, Propagation International Symposium, Seattle,
January 1994, pp.5-8 June 19-24, 1994, pp.1128 – 1131

.......... . . . . . . . . . . . . . I

9i@l )
22 . . . .

L

H ““”
mn

9t(m, ~) $ tie impulseemergingfromthemthPrt
atthekthIterationdueto theunitimpukeinjection
on thetrthpxt atk = O(initialtime)

Fig.1 A short-circuitedwaveguide stubmodelled by
a two-dimensional TLM mesh
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Fig.2 A rectangularwaveguidecross-section10A ~x 16A L
which is divided intotwo separatesections10A Lx 9 A L
and IOALx9AL

Fig.3 Frequency Response of the cut wavegtide with convolution
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