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Abstract—-The storage of a general TLM
Johns matrix is large because the dimension

of Johns

iteration

matrix is dependent on the
number.  The
with  Johns

computationally intensive as the whole time

time-domain
convolution matrix is
history of the incident impulses is involved.
In this paper, analytic Johns matrix is
derived. A recursive convolution formulas is
then developed, resulting in a considerable

reduction of the computation count.

I. Introduction
The Transmission Line Matrix (TLM)
method is a numerical modeling tool for
solving electromagnetic field problem in
space and time. An extensive list of
references can be found in a chapter on

TLM applications [1] .

Difficulties arise in the TLM method for the
problems containing large areas with the
changes only over a small part of geometry.
Inefficiency results as the computation have
to be re-iterated over the large unchanged

areas every time a change is made.
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The technique of diakoptics (or domain
partitioning in time-domain) overcomes the
solution

disadvantages by breaking a

domain down into smaller sub-domains.
The subdomains are solved individually and
then connected together to obtain the
overall solution for a problem. The concept
and idea were first presented by Johns [2,
3], further enhanced and generalized by
Hoefer [4] with the introduction of the
concept of Johns matrix, the discrete time-

domain Green’s function for TLM.

II. Analytic Johns Matrix

Consider a simple short-circuited
rectangular waveguide stub as shown in

Figure 1, modeled by a two-dimensional

TLM network.

Conventionally, the Johns matrix at the
open end is generated by first injecting a
single unit impulse into branch 1, and
computing the resulting impulse streams
emerging from all M branches. This yields
all elements g;(m,1) of the Johns matrix.

Then branch 2 is excited, yielding all
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elements g;(m,2). In general, N such
analyses or N runs of such numerical
simulation are necessary to obtain all terms
of the Johns
considerations to reduce that
number. The size of the
would be M x N x(K+1),

huge for a long iteration ( large K).

matrix unless symmetry
allow us
Johns matrix

which can be

With the Johns matrix, the response of the
structure due to an arbitrary excitation in
space and time can be computed by

convolution:

Vi(m)=g)(m,n) & Vi(n)

~n21 k,Z 9. kl(m n k'( n)

(1)

As can be seen, the convolution in time
domain involves the whole time history of
the incident impulses and the computation
count increases as the k increases (time
progresses). If a long iteration (large k) is
the

extremely slow at the last few iterations as

needed, computation will becomes
the CPU time for each iteration becomes

too large.

Recent investigation has shown that the
solutions of a recursive numerical method
can be analytically expressed in terms of
superposition of modal modes, each mode
being weighted by exponential functions
whose arguments are proportional to time
or the time step k [3,4]. Since the Johns
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matrix is a particular TLM solution with

special arrangements of the impulse
injection as mentioned earlier, it can be
written as:
gk m,n) Z bmnp Ap
= Z bmnp I)‘p|k e]kaAt (2)
p=1

where bypp is the constant independent of

Jwqp At
k and Ap=[Ap| e p

the modal matrix with wp being the modal

is the eigenvalue of
frequency.

It should be noted that in the above
equation, not all the terms need to be
stored. If Ap is a complex number, there
must be an eigenvalue conjugate to Ap.
The same to bpypp. Hence, conjugates of
the Ap and bypp need not be recorded. In
addition, the structure (Figure 1) is lossy.
As a result, the terms with |Ap|=1, which

represent non-decaying spurious modes, can

be discarded.

III. Recursive Scheme for Convolution
With the analytic Johns matrix (2), the
numerical convolution will become a simple

recursive algorithm.

VZ(m) = gk(m,n) ® V%c(n)

where Qpnp(k



anp(o) = bmnp V%)(m)

In consequence, the numerical convolution
does not require the storage of the complete

time history of incident impulses. It is no

the

longer dependent on number of
iteration. Thus, practical use of Johns
matrix over a long iteration becomes
feasible.

IV. Numerical Results
The rectangular waveguide cross-section
10Al x 16Al is selected to validate and test
the proposed method (see Figure 2). The
structure was first divided into two separate
sections 10Al x 9A! and 10Alx TAl and the
Johns matrices were generated using the
conventional approach and the proposed
method, the Johns

matrices were connected to obtain the

respectively. Then,

solution.

Figure 3 shows the frequency responses of
the waveguide obtained from the proposed
method the
approach. They are basically the same.

and from conventional

Figure 4 presents the comparison between
the computation time per iteration used by
the conventional and proposed methods.
For the initial period of simulation, the

iteration number is small. The conventional
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approach takes less CPU time. However, as
the the

computation amount per iteration in the

iteration number increase,

conventional approach increases
approximately linearly with the the
iteration number (due to the convolution),
while in the proposed method 1t is

unchanged. As a result, when the iteration
number exceeds 700, the proposed approach

starts to have less computation time.

V. Conclusion
In this paper, an analytic Johns matrix has
been obtained and consequently a recursive
has

practical

algorithm for convolution been

developed. It the

applications of Johns matrix to realistic

allows

problems and the establishment of database

for standard structures in the forms of

Johns matrix.
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